
 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

 

AGILE METHODOLOGY AND SOFTWARE REUSE A 

COMMON APPROCH TO SOFTWARE DEVELOPMENT 
 

 

 

Manjot Singh Ahuja, Neha Sadana 

CSE Department 

Shivalik Institute of Engineering and Technology, Aliyaspur, Haryana, India 

 

 

Abstract  

Years before software were not so complex, but with changing requirements size of software has 

increased and complexity too. Fast development, adaptability to constantly changing 

requirements, low cost and of high quality is also demand of time. In earlier software 

development processes there were no interaction between development team and client but new 

development processes these interactions have become common. New development processes, 

that is, Agile Methodology, came in light because in previous ones some deficiencies appeared, 

that is, time to delivery problems. As with time, deficiencies appear in every approach, and agile 

development is not an exception to the same. Deficiency found in Agile Methodology is of 

reusability, which is due to lack of time to delivery. Reusability can be acceleration to agile 

methodology. To adapt reusability in Agile, we need to build a database which will contain 

reusable components, that is, component based development. To build that database, it will take 

time and effort, but once it is adapted, it will be useful in improving quality and reducing time of 

development. 

Keywords: Agile Methodology, Software Reuse, Factors affecting reusability. 

 

Introduction 

Different software development models failed to satisfy needs of present software industry. The 

aim of all the process models is to deliver quality product with reduced time of development, and 



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

reduced cost. Still, no single process model is complete in itself. Software industry is moving 

towards new methodologies, such as, Agile Methodology. Agile processes provide a room for 

rapid changing requirements throughout the development cycle. It also helps in providing 

effective conversation between software developers and customers and also helps in early 

product delivery too. Agile methodology has adopted some different principles to show its 

effective presence. Following are the principles followed in Agile Development [1]: 

1) Highest priority is to please the customer through early and continuous delivery of 

valuable software. 

2) Welcome changing requirements, even at later stages in development. Agile processes 

harness change for the customer's competitive advantage. 

3) Deliver working software frequently, from a couple of weeks to a couple of months, with 

a preference to the shorter timescale. 

4) Business people and developers must work together daily throughout the project. 

5) Build projects around motivated individuals. Give them the environment and support they 

need. 

6) The most efficient and effective method of conveying information to and within a 

development team, that is, face-to-face conversation. 

7) Working software is the primary measure of progress. 

8) Agile processes promote sustainable development. The sponsors, developers and users 

should be able to maintain a constant pace indefinitely. 

9) Continuous attention to technical superiority and good design enhances agility. 

10) Simplicity. 

11) The best architectures, requirements, and designs emerge from self-organizing teams. 



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

12) At regular intervals, the team reflects on how to become more effective, then tunes and 

adjusts its behavior accordingly. 

 

Agile Methodology 

Agile is collection of various methodologies, these methodologies are consistent with the above 

principles.  The most popular ones are: 

Dynamic System Development Method (DSDM) - DSDM [2] was in light before the term 

‘Agile’ was even invented, but is absolutely based on all the principles that are known for 

Agile.  It is an organized process focused on delivering business solutions quickly and 

efficiently. It is similar in many ways to SCRUM and XP, but it has its best uses where the time 

requirement and recourses are fixed. DSDM makes heavy use of prototyping to make sure 

interested parties have a clear picture of all aspects of the system. DSDM differentiates on the 

following four types of prototypes [3]. 

1) Business Prototype: Allow assessment of the evolving system 

2) Usability Prototype: Check the user interface 

3) Performance Prototype: Ensure solution will deliver good performance while handling 

big volumes 

4) Capability Prototype: Evaluate possible options  

In Traditional Method, Recourses and Time are Variable In Traditional Method, 

Functionality are Fixed 



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

 

 

Scrum- It is also an agile development method, which concentrates particularly on how to 

manage tasks within a team-based development environment. It allows the process to progress by 

iterative and incremental development called agile sprints. Each sprint typically goes between 2-

4 weeks. It is ideally suited for projects which are prone to rapid changes. Scrum [4] is relatively 

simple to implement and addresses many issues that have plagued IT development teams for 

decades.  

 

 

 

 

  

             24 hours sprint 

            2-4 weeks sprint                    

 

  Product backlog                    Sprint backlog                                 Sprint                                     Deliverable 

Fig 1: Working of Scrum (proceeds from left to right direction) 

 

Sprint - meeting in which discussion is there regarding the progress of project. 

Recourses Time Functionality 

In Dynamic System Development Method,  Recourses 

and Time are Fixed 

In Dynamic System Development 

Method, Functionality are Variable 

 

 

 

 

 

 

 

   



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

Backlog – unfinished parts of the process. 

Scrum Team and Roles  

1) Product Owner- Ensures that team delivers value to the business. Product owner write 

user stories (customer-centric), prioritize them, and adds them to product backlog if 

needed. 

2) Development Team- Responsible for delivering product increments at the end of each 

sprint. Its size is small (3-9 members) and having cross-functional skills (analyze, design, 

develop, test, technical communication, document, etc.). 

3) Scrum Master - Is responsible for removing impediments to deliver sprint goals or 

deliverables. Scrum master ensures that scrum process is used as intended, in other words 

we can say is enforcer of rules. This helps team to focus on task at hand. 

4)  Stakeholders - Are customers or vendors that are directly involved in sprint reviews. 

5) Managers – People who control work environment. 

 

Daily sprint answers the following- 

1) Last 24 hour tasks 

2) Plan for next 24 hours tasks 

3) What are all obstructions of the task 

 

XP (Extreme Programming) [5]- A light weight agile methodology focusing more on the 

software engineering process and addressing the analysis, development and test phases with 

novel approaches that make a substantial difference to the quality of the end product. In this 

testing take place in parallel. Business requirements are gathered in terms of stories and these 

stories are stored in place called parking lot. Releases are based on shorter cycles with span of 14 

days. 



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

Phases of Extreme Programming [6]- 

 

1) Planning   4) Execution 

2) Analysis   5) Wrapping 

3) Design    6) Closure 

Software Reuse 

Software engineering deals with the development of software systems. As the size of the 

software system is increasing because of complexity and demand time is decreasing, new 

approaches of software development coming in the environment. These approaches include 

Object-oriented programming [8], Component-based programming [9], and Aspect-based 

programming [10]. Above mentioned approaches are effective for software development but 

there is need to reduce the effort, time, and cost to build the software so that productivity and 

quality of software programs can be increased. Software reuse [7] can be a means to reduced 

development cost and can improve quality. Software reuse is the use of existing software to build 

new software. Reusable software can be code, templates, functions, procedures, objects, routines 

or framework.  

  



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

 

Manage 

Plan, Fund, Prioritize, Coordinate, Learn 

 

 

Create 

Engineer Domain, Framework, 

Components, Tools 

Support 

Certify, Classify, Package, 

Distribute, Advise, Maintain 

Utilize 

Select, specialize, assemble 

             Product requirements and                                                                            Products 

             Existing software                                                                                                          

 

Fig 2: Systematic reuse process and organization 

 

By systematic reuse [11], it is meant that an institutionalized organizational approach to product 

development in which reusable assets are purposely created or acquired, and then consistently 

stored, used, and maintained to obtain high levels of reuse. Thereby optimize the organization's 

overall ability to produce quality software products rapidly and effectively. This requires a 

significant effort to change working culture of organization, and a multitude of other factors. 

Changes associated with CPI (continuous process improvement). It is essential to change the way 

of viewing software at a fundamental level. It must be viewed as an organizational asset, to be 

invested in, improved effectively and consistently. Initial investment is required to start the reuse 



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

process, in order to find reusable components, so that those components can be reused in future 

programs, and when this reuse process is used in the new software system it will dwindle  time to 

many folds.  To find reusable components [12] we have to find reusability of components. 

Reusability is the extent to which a component can be reused. To find reusability we need a 

metric which can find the reusability of components. There exist lot of such reusability metrics; 

out of those metrics we can adopt any efficient metric to find reusability. To choose effective 

metric, we should know what the factors which affect reusability, so, following are the factors 

which we extracted from previous studies [13], [14] and after analyzing them, which affecting 

reusability:  

 

1) Adaptability   11) Generality 

2) Availability    12) Maintainability 

3) Complexity   13) Modularity 

4) Completeness   14) Portability 

5) Correctness   15) Price 

6) Cohesion    16) Quality 

7) Coupling    17) Reuse 

8) Documentation   18) Reliability 

9) Efficiency   19) Testability 

10) Expandability 

So, these are some of the factors which one should keep in mind to decide the reusability of 

components. 

 

Proposed work 



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

In early studies done on reusability in Agile, it has been observed that most of the emphases were 

made on the classification of components in database, so that extracting reusable components 

become easier. No one can deny the usefulness of these researches, but prior to this step, we have 

to find the components which can be reused. It is important to find the components with higher 

reusability factor. There are number of factors which affect the reusability of components, and if 

value of these factors is high, reusability of component decreases. We have to find those 

components which are having low value of the factors having negative effect on reusability, and 

then to add those components to database. If this approach is adopted, time of finding reusable 

component from repository will be decreased and further efforts for modifying those components 

will be reduced, because we are all ready having those components in repository which are 

having high reusability value. To find reusability of component we have to test those 

components with some metric that can find the reusability. And we already have discussed 

factors which affect reusability. So, in Fig3 there is proposed model which can help us 

improving work flow in agile atmosphere. In this model we have shown how reusability can be 

applied in agile atmosphere.   

  



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

 

                                                                                                                      

 

 

 

                                                                                                                                                                                                

 

 

 

                                                                                                                                      No 

 

 

 

                                                                                     Yes 

 

                                   

                                                                                                                                                                                  

                                                                    If needed, component can be reused 

 

 

 

Fig3: Flowchart for Proposed Model 

 

Explanation of model: while we develop code in agile atmosphere, we can test code components 

with reusability metric. There will be a threshold value that a code component should satisfy, if 

that code component satisfies threshold value, component will be added to the database 

according to classification criteria for further reuse, but if threshold is not achieved, we can 

discard that component and that will not be added to the reuse component database.  

 

Conclusion and Future Scope 

Finding reusability of 

components with help of 

selected metric 

Requirement Gathering 

Analysis 

Designing 

Store components in database 

with effective classification 

technique 

Coding 

Discard that 

component 

Operation 

Component 

satisfying 

threshold value 



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

From above defined principles and methodologies it can be clearly observed that Agile 

Methodologies are inclined only towards that client’s need. But work is not done keeping 

reusability in mind. As in agile methodology, time we have to spend on development is limited; 

hence compromise with quality is made, as quality of software also depends on quality of code 

and documentation. So there is need of reusable artifacts (analysis, design document, patterns, 

etc.). Lack of documentation and design in development make it difficult to extract reusable 

functionalities. Because of this, difficulty level and cost of modification also increases. So by 

adopting reusability in agile development, quality of system can be maintained and time can 

further be reduced to many folds. In this proposed work we have added concept of reusability at 

coding stage, which can help in reducing coding efforts and saving lot of time. 

In future we will present reusability metric for measuring reusability of code and will try to 

implement scope of reusability at other stages of software life cycle model, helping reducing 

time and effort.  

 

References 

[1]  http://agilemanifesto.org/principles.html 

[2]  http://dsdmofagilemethodology.wikidot.com/ 

[3] http://www.codeproject.com/Articles/5097/What-Is-DSDM 

[4] http://en.wikipedia.org/wiki/Scrum_(development) 

[5] http://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/ 

[6] http://www.brighthubpm.com/methods-strategies/88996-the-extreme-programming-life-

cycle/ 

[7] http://www.cs.toronto.edu/~yijun/ece450h/handouts/lecture8x4.pdf 

[8] http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-Programming-

Concep 



 
 

International Manuscript ID : ISSN23194618-V2I1M13-012013 

 

 

 

 

[9] http://acmantwerp.acm.org/wp-content/uploads/2010/10/componentbasedprogramming.pdf 

[10] http://en.wikipedia.org/wiki/Aspect-oriented_programming 

[11] http://martin.griss.com/pubs/fusion1.htm 

[12] G. Caldiera and V.R. Basili, Identifying and qualifying reusable software components, 

IEEE Computer, vol.24, Feb.1991. 

[13] Joakim Fröberg , “ Software Components and COTS in Software System  Development”. 

[14] W.J. Salamon , D.R Wallace ,” Quality Characteristics and Metrics for reusable software 

“May  1994 

[15] Pressman R. S., “Software Engineering”, 7th edition, McGraw Hill Education, 2009 

 

 

 

 


